RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Metalation of Ketazines. Interaction of Tetralone Azine with Methyllithium

PII
S0132344X25080055-1
DOI
10.31857/S0132344X25080055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 8
Pages
529-538
Abstract
The reaction of tetralone azine with methyllithium in tetrahydrofuran results in the release of 1 mol of СН and the formation of the lithium salt of enamine I, which crystallizes as a dimer in which the lithium atoms are bridges between the sp- and sp-nitrogen atoms of the two ligands and form a six-membered LiNNLiNN metallacycle (CCDC No. 2426300). Analysis of the electron density topology using the non-covalent interaction index and the source function allowed us to determine that each lithium atom in complex I interacts with the NNCC fragment of the ligand. The study of the charge distribution in the ligand anion demonstrated that the C(2) position is the most favorable for directing the attack of various electrophilic substrates. The DFT method showed that the process of phosphorylation of the deprotonated azine tetralone PCl is thermodynamically more favorable by 12.6 kcal/mol than the product of phosphorylation at the nitrogen atom.
Keywords
кетазины металлирование диазедифосфапенталены нековалентные взаимодействия
Date of publication
06.03.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Tamaru Y., Harada T., Yoshida Z. // Tetrahedron Let., 1977. V. 49. P. 4323.
  2. 2. Tamaru Y., Harada T., Yoshida Z. // Chem. Let. 1978. P 263.
  3. 3. Henoch F.E., Hampton K.G., Hauser C.R. // J. Am. Chem. Soc. 1969. V. 91(3). P. 676.
  4. 4. Bartuenga J., Iglesias M.J., Gotor V. // J. Chem. Soc., Chem. Comm. 1987. V. 8. P. 582.
  5. 5. Xia Y., Zhang X., Liu L. et al. // Ind. Eng. Chem. Res. 2020. V. 59. P. 18748.
  6. 6. Safari J., Gandomi-Ravandi S., Ghothinejad M. // J. Saudi Chem. Soc., 2016. V. 20(1). P. 20.
  7. 7. Tamaru Y., Harada T., Yoshida Z. // J. Org. Chem. 1978. V. 43. P. 3370.
  8. 8. Groh T., Elter G., Nolleneyer M. et al. // Main Group Met. Chem. 2000. V. 23. P. 709.
  9. 9. Groh, T., Elter, G., Nolleneyer et al. // Organometallics. 2000. V. 19, P. 2477.
  10. 10. Safari J., Gandomi-Ravandi S. // RSC Adv. 2014. V. 4. P. 46224.
  11. 11. Kornev A.N., Panova Y.S., Sushev V.V. et al. // Inorg. Chem. 2019. V. 58. P. 16144.
  12. 12. Kornev A.N., Panova Y.S., Sushev V.V.// Phosphorus, Sulfur Silicon Relat. Elem. 2020. V. 195. P. 905.
  13. 13. Panova Yu., Khristolyubova A., Zolotareva N. et al. // Dalton Trans. 2021. V. 50. P. 5890.
  14. 14. Kornev A.N., Sushev V.V., Panova Y.S. et al. // Inorg. Chem. 2014. V. 53. P. 3243.
  15. 15. Han W., Zhang G., Li G. et al. // Org. Lett. 2014. V. 16. P. 3532.
  16. 16. Rigaku Oxford Diffraction. (2022). CrysAlis Pro software system, version 1.171.42.68a, Rigaku Corporation, Wroclaw, Poland.
  17. 17. Sheldrick G.M. //Acta Crystallogr. A. 2015. V. 71. P. 3.
  18. 18. Sheldrick G.M. //Acta Crystallogr. C. 2015. V. 71. P. 3.
  19. 19. Becke A.D. // J. Chem. Phys. 1993. V. 98. 5648.
  20. 20. Lee C., Yang W., Parr R.G. // Phys. Rev. 1988. V. 37. P. 785.
  21. 21. Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. P. 11623.
  22. 22. Pritchard B. P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. 4814.
  23. 23. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
  24. 24. Schuchardt K. L., Didier B. T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. 1045.
  25. 25. Dill J.D., Pople J. A. // J. Chem. Phys. 1975. V. 62. P. 2921.
  26. 26. Ditchfield R., Hehre W.J., Pople J. // J. Chem. Phys. 1971. V. 54. 724.
  27. 27. Frisch M.J., Trucks G.W., Schlegel H. B. et al. // Gaussian 09 Revision E.01, Gaussian, Inc., Wallingford, CT, 2009.
  28. 28. Hariharan P.C., Pople J.A. // Theor. Chim. Acta. 1973. V. 28. P. 213.
  29. 29. Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. P. 2257.
  30. 30. Dovesi R., Erba A., Orlando R. et al. // WIRES Comput. Mol. Sci. 2018, V. 8. P. e1360.
  31. 31. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272.
  32. 32. Jelsch C., Guillot B., Lagoutte A. et al. // J. Appl. Crystallogr. 2005. V. 38. P. 38.
  33. 33. Bader R.F.W. // Atoms in Molecules: A Quantum Theory, Oxford: Oxford Univ., 1990.
  34. 34. Cortes-Guzman F., Bader R.F.W. // Coord. Chem. Rev. 2005. V. 249. P. 662662.
  35. 35. Keith T.A. AIMAII 2017. Version 17.11.14. Overland Park, KS, USA: TK Gristmill Software, 2017.
  36. 36. Stash A.I., Tsirelson V.G. // J. Appl. Cryst. 2014. V. 47. P. 2086.
  37. 37. Dilworth J.R. // Coord. Chem. Rev. 1976. V. 21. P. 29.
  38. 38. Michel R., Herbst-Irmer R., Stalke D. // Organometallics. 2011. V. 30. P. 4379.
  39. 39. Collum D.B., Kahne D., Gut S.A. et al. // J. Am. Chem. Soc. 1984. V. 106. P. 4865.
  40. 40. Kohrt S., Dachwitz S., Daniliuc C.G. et al. // Dalton Trans. 2015. V. 44. P. 21032.
  41. 41. Kunz K., Pflug J., Bertuleit A. et al. // Organometallics. 2000. V. 19. P. 4208.
  42. 42. Batsanov S.S. // Inorg. Mater., 2001, V. 37. P. 871.
  43. 43. Shannon R.D. // Acta Crystallogr. 1976, V. A32. P. 751.
  44. 44. Bader R.F.W. Atoms in Molecules – A Quantum Theory. Oxford: Oxford Univ. Press, 1990. 458 p.
  45. 45. Farrugia L.J., Evans C., Lentz D. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 1251.
  46. 46. Smol’yakov A.F., Dolgushin F.M., Antipin M.Yu. // Russ. Chem. Bull. 2012. V. 61. P. 2204.
  47. 47. Lugan N., Fernandez I., Broussos R. et al. // Dalton Trans. 2013. V. 42. P. 898.
  48. 48. Smol’yakov A.F., Dolgushin F.M., Ginzburg A.G. et al. // J. Mol. Struct. 2012. V. 1014. P. 81.
  49. 49. Kaminski R., Herbaczynska B., Srebro M. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 10280.
  50. 50. Makal A.M., Plazuk D., Zakrzewski J. et al. // Inorg. Chem. 2010. V. 49. V. 4046.
  51. 51. Scheins S., Messerschmidt M., Gembleky M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 6154.
  52. 52. Hey J., Andrada D.M., Michel R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 10365.
  53. 53. Bader R.W.F., Gatti C. // Chem. Phys. Lett. 1998. V. 287. P. 233.
  54. 54. Farrugia L.J., Macchi P. // J. Phys. Chem. A. 2009. V. 113. P. 10058.
  55. 55. Gatti C. // Electron Density and Chemical Bonding II: Theoretical Charge Density Studies / Ed. Stalke D. Springer, Berlin, Heidelberg, 2012. P.193.
  56. 56. Johnson E.R., Keinan S., Mori–Sanchez P. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 6498.
  57. 57. Contreras-Garcia J., Johnson E.R., Keinan S. et al. // J. Chem. Theory Comput. 2011, V. 7. P. 625.
  58. 58. Contreras-Garcia J., Yang W., Johnson E.R. // J. Phys. Chem. A. 2011. V. 115. P. 12983.
  59. 59. Fukin G.K., Cherkasov A.V., Baranov E.V. et al. // ChemistrySelect. 2019. V. 4. P. 1.
  60. 60. Fukin G.K., Baranov E.V., Rumyantsev R.V. et al. // Struct. Chem. 2020. V. 31. P. 1841.
  61. 61. Fukin G.K., Cherkasov A.V., Rumyantsev R.V. et al. // Mendeleev Commun. 2019. V. 29. P. 346.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library