- PII
- S3034549925010046-1
- DOI
- 10.7868/S3034549925010046
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 1
- Pages
- 32-40
- Abstract
- The reaction of annelated 1,4-dichloro-3a,6a-diaza-1,4-diphosphapentalene (DDPCl2, I) with 2 equivalents of lithium phenyl selenolate (PhSeLi) results in the substitution of the chlorine atoms by the PhSe group and formation of exclusively cis isomer of annelated 1,4-bis(phenylselenyl)-3a,6a-diaza-1,4-diphosphapentalene (II) according to the XRD data. The noncovalent Se···Se interaction (3.968 Е) is observed in the crystal of compound II. The cis-II isomer is by 6.0 kcal/mol thermodynamically more favorable than trans-I according to the DFT/B3LYP/6-31G(d) calculations. The cis-1,4-bis(phenylselenyl) and 1,1-bis(phenylselenyl) isomers (the latter is formed due to the easy migration of the PhSe group) are equilibrated in the solution. Noncovalent N∙∙∙P and Se∙∙∙H interactions participate in the stabilization of the 1,1-isomer. The crystallographic structural information is available at the Cambridge Crystallographic Data Centre (CIF file CCDC no. 2357640).
- Keywords
- диазадифосфапенталены диазафосфолы двухкоординированный фосфор нековалентные взаимодействия селен-селен, азот-фосфор
- Date of publication
- 17.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 46
References
- 1. Kornev A.N., Sushev V.V., Panova Yu.S. et al. // Inorg. Chem. 2014. V. 53. P. 3243.
- 2. Panova Y.S., Sushev V.V., Doroado Daza D.F. et al. // Inorg. Chem. 2020. V. 59. P. 11337.
- 3. Panova Yu., Khristolyubova A., Zolotareva N. et al. // Dalton Trans. 2021. V. 50. P. 5890.
- 4. Gupta N. // Phosphorus Heterocycles II. Topics in Heterocyclic Chemistry / Bansal R. ed. Berlin: Heidelberg Springer, 2010. V. 21. P. 175.
- 5. Karaghiosoff K., Cleve C., Schmidpeter A. // Phosphorus, Sulfur Silicon Relat. Elem. 1986. V. 28. № 1–2. P. 289.
- 6. Zolotareva N.V., Sushev V.V., Panova Y.S. et al. // ChemPlusChem. 2023. V. 88(2). P. e202200438.
- 7. Grishin M.D., Zolotareva N.V., Panova Yu.S. et al. // Mendeleev Comm. 2023. V. 33. P. 631.
- 8. SAINT. Data Reduction and Correction Program. Madison (WI, USA): Bruker AXS, 2014.
- 9. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. P. 3.
- 10. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 11. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 12. Bader R.F.W. // Atoms in Molecules: A Quantum Theory. Oxford: Oxford Univ., 1990.
- 13. Cortes-Guzman F., Bader R.F.W. // Coord. Chem. Rev. 2005. V. 249. P. 662662.
- 14. Keith T.A. AIMAll. Version 17.11.14. Overland Park KS USA: TK Gristmill Software, 2017. https://aim.tkgristmill.com/
- 15. Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982.
- 16. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. P. 4814.
- 17. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
- 18. Schuchardt K.L., Didier B.T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. P. 1045.
- 19. Canal Neto A., Muniz E.P., Centoducatte R. et al. // J. Mol. Struc. 2005. V. 718. P. 219.
- 20. Camiletti G.G., Machado S.F., Jorge F.E. // J. Comput. Chem. 2008. V. 29. P. 2434.
- 21. Dovesi R., Erba A., Orlando R. et al. // WIREs Comput. Mol. Sci. 2018. V. 8. P. e1360.
- 22. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272.
- 23. it Jelsch C., Guillot B., Lagoutte A. et al. // J. Appl. Crystallogr. 2005. V. 38. P. 38.
- 24. Stash A.I., Tsirelson V.G. // J. Appl. Cryst. 2014. V. 47. P. 2086.
- 25. Batsanov S.S. // Inorg. Mater. 2001. V. 37. P. 871.
- 26. Parveen S., Kilian P., Slawin A.M. et al. // Dalton Trans. 2006. V. 21. P. 2586.
- 27. Artem’ev A.V., Malysheva S.F., Sukhov B.G. et al. // Mendeleev Commгт. 2012. V. 22. № 1. P. 18.
- 28. Artem’ev A. V., Gusarova N. K., Malysheva S. F. et al. // Tetrahedron Lett. 2010. V. 51. № 16. P. 2141.
- 29. Veljković I.S., Kretić D.S., Veljković D.Ž. // CrystEngComm. 2021. Т. 23. №. 18. С. 3383.
- 30. Groom C.R., Bruno I.J., Lightfoot M.P. et al. // The Cambridge structural database. Structural Science. 2016. V. B72(2). P. 171.
- 31. Панова Ю.С., Христолюбова А.В., Сущев В.В., и др. // Изв. АН. Сер. хим. 2021. C. 1973
- 32. Panova Yu.S., Khristolyubova A.V., Sushev V.V., et al. // Russ. Chem. Bull., Int. Ed. 2021. V. 70. P. 1973.
- 33. Sushev V.V., Zolotareva N.V., Grishin M.D., et al. // Russ. J. Gen. Chem. 2023. V. 93. Suppl. 3. P. S713.
- 34. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. P. 170.
- 35. Espinosa E., Alkorta I., Rozas I. et al. // Chem. Phys. Lett. 2001. V. 336. P. 457.
- 36. Tsirelson V.G., Ozerov R.P. // Electron Density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry. IOP Publ., Bristol, 1996.
- 37. Cremer C., Kraka E. // Croat. Chim. Acta. 1984. V. 57. P. 1259.
- 38. Bader R.F.W. // J. Phys. Chem. A. 1998. V. 102. P. 7314.
- 39. Bushmarinov I.S., Lyssenko K.A., Antipin M.Yu. // Russ. Chem. Rev. V. 78. P. 283.
- 40. Fukin G.K., Cherkasov A.V. // Mendeleev Commun. 2021. V. 31. P. 182.
- 41. Pochekutova T.S., Fukin G.K., Baranov E.V. et al. // Inorg. Chim. Acta. 2022. V. 531. P. 120734.
- 42. Rumyantcev R.V., Zhigulin G.Yu., Zabrodina G.S. et al. // Mendeleev Commun. 2023. V. 33, P. 41.
- 43. Ilichev V.A., Rogozhin A.F., Belyakova A.V. et al. // Organometallics. 2023. V. 42. P. 2792.
- 44. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62, P. 12625.
- 45. Bubnov M.P., Zolotukhin A.A., Fukin G.K. et al. // Dalton Trans. 2024. V. 53. P. 9151.