RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Synthesis, Structure, Optical, and Electrochemical Properties of the Chromophore Cyclometalated Iridium(III) Complex

PII
S3034549925080038-1
DOI
10.7868/S3034549925080038
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 8
Pages
510-518
Abstract
A new N-donor ligand, methyl 4-(1-methyl-1H-perimidin-2-yl)nicotinate, and the corresponding octahedral cationic iridium(III) complex (I) were designed and synthesized. 1-Benzyl-2-phenyl[2,3]naphthimidazole was used as a cyclometalated ligand; PF served as a counterion. Compound I was characterized by H, C, F, P, H,H-COSY, H,H-NOESY NMR, high-resolution mass spectrometry and X-ray diffraction. As a result of the combination of ligands containing a large conjugated system around the metal ion, the target complex exhibits light absorption up to 700 nm (ε ~ 1000 M·cm), translating in its deep color. Complex I demonstrates reversible electrochemical behavior at positive potentials with E = 0.58 V vs. E. In terms of the key characteristics, the resulting compound surpasses most iridium analogs, and therefore appears promising for further testing in photovoltaic devices.
Keywords
рентгеноструктурный анализ лиганды электронные спектры
Date of publication
15.08.2025
Year of publication
2025
Number of purchasers
0
Views
46

References

  1. 1. Tritton D.N., Tang F.-K., Bodella G.B. et al. // Coord. Chem. Rev. 2022. V. 459. P. 214390. https://doi.org/10.1016/j.ccr.2021.214390
  2. 2. Nykhrikova E.V., Kiseleva M.A., Kalle P. et al. // Inorg. Chem. 2025. V. 64. № 10. P. 5210. https://doi.org/10.1021/acs.inorgchem.Sc00155
  3. 3. Ruggeri D., Hoch M., Spataro D. et al. // Chem. Eur. J. 2025. V. 31. № 18. https://doi.org/10.1002/chem.202403309
  4. 4. Bowden J.C., Francis P.S., DiLuzio S. et al. // J. Am. Chem. Soc. 2022. V. 144. № 25. P. 11189. https://doi.org/10.1021/jacs.2c02011
  5. 5. Longhi E., De Cola L. // Iridium(III) Optoelectron. Photonics Appl. Wiley, 2017. P. 205. https://doi.org/10.1002/9781119007166.ch6
  6. 6. Yan J., Wu Y., Huang M. et al. // Angew. Chem. Int. Ed. 2025. https://doi.org/10.1002/anie.202424694
  7. 7. Tatarin S.V., Krasnov L.V., Nykhrikova E.V. et al. // J. Mater. Chem. C 2025. https://doi.org/10.1039/DSTC00305A
  8. 8. Wang X., Wu C., Tong K. et al. // Adv. Opt. Mater. 2025. V. 13 P. 2403273 https://doi.org/10.1002/adom.202403273
  9. 9. Wang S.-F., Su B.-K., Wang X.-Q. et al. // Nat. Photonics. 2022. V. 16. № 12. P. 843. https://doi.org/10.1038/s41566-022-01079-8
  10. 10. Milaeva E.R. // Russ. J. Coord. Chem. 2024. V. 50. № 12. P. 1043. https://doi.org/10.1134/S1070328424600815
  11. 11. Krasnov L., Tatarin S., Smirnov D. et al. // Sci. Data. 2024. V. 11. № 1. P. 870. https://doi.org/10.1038/s41597-024-03735-w
  12. 12. Kostova I. // Molecules. 2025. V. 30. № 4. P. 801. https://doi.org/10.3390/molecules30040801
  13. 13. Mal’tsev E.I., Lypenko D.A., Dmitriev A.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S2. https://doi.org/10.1134/S107032842360078X
  14. 14. Burlov A.S., Vlasenko V.G., Garnovskii D.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S68. https://doi.org/10.1134/S1070328423600857
  15. 15. Sreejith S., Ajayan J., Reddy N.V.U. et al. // Micro Nanostructures. 2025. V. 200. P. 208101. https://doi.org/10.1016/j.micma.2025.208101
  16. 16. Muñoz-García A.B., Benespert I., Boschloo G. et al. // Chem. Soc. Rev. 2021. V. 50. № 22. P. 12450. https://doi.org/10.1039/DOC501336F
  17. 17. Wang H., Zhang Y., Lin X. et al. // Sensors Actuators. B. 2022. V. 352. P. 131022. https://doi.org/10.1016/j.snb.2021.131022
  18. 18. Tatarin S.V., Meshcheriakova E.A., Kozvukhin S.A. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16261. https://doi.org/10.1039/D3DT02789A
  19. 19. DiLuzio S., Connell T.U., Mallui V. et al. // J. Am. Chem. Soc. 2022. V. 144. № 3. P. 1431. https://doi.org/10.1021/jacs.1c12059
  20. 20. De Kreijger S., Schott O., Troian-Gautier L. et al. // Inorg. Chem. 2022. V. 61. № 13. P. 5245. https://doi.org/10.1021/acs.inorgchem.1c03727
  21. 21. Wang L., Wang S., Chang X. et al. // Dyes Pigments. 2022. V. 207. P. 110733. https://doi.org/10.1016/j.dyepg.2022.110733
  22. 22. Yoon S., Gray T.G., Teets T.S. // Inorg. Chem. 2023. V. 62. № 20. P. 7898. https://doi.org/10.1021/acs.inorgchem.3c00670
  23. 23. Li M., Wang L., You C. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16276. https://doi.org/10.1039/D3DT02629A
  24. 24. Bodedla G.B., Zhu X., Zhou Z. et al. // Top. Curr. Chem. 2022. V. 380. № 6. P. 49. https://doi.org/10.1007/s41061-022-00404-7
  25. 25. Cui P., Xue Y. // J. Alloys Compd. 2023. V. 960. P. 170668. https://doi.org/10.1016/j.jallcom.2023.170668
  26. 26. Bezzubov S.I., Zharinova I.S., Khusyainova A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 34. P. 3277. https://doi.org/10.1002/ejic.202000372
  27. 27. Zakharov A.Y., Kovalenko I.V., Meshcheriakova E.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 846. https://doi.org/10.1134/S1070328422700051
  28. 28. Sahiba N., Agarwal S. // Top. Curr. Chem. 2020. V. 378. № 4–5. P. 44. https://doi.org/10.1007/s41061-020-00307-5
  29. 29. Pozharskii A.F., Gulevskaya A.V., Claramunt R.M. et al. // Russ. Chem. Rev. 2020. V. 89. № 11. P. 1204. https://doi.org/10.1070/RCR4963
  30. 30. Kalle P., Kiseleva M.A., Tatarin S.V. et al. // Molecules. 2022. V. 27. № 10. P. 3201. https://doi.org/10.3390/molecules27103201
  31. 31. Tatarin S.V., Smirnov D.E., Taydakov I.V. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6435. https://doi.org/10.1039/D3DT00200D
  32. 32. Liao H.-S., Xia X., Hu Y.-X. et al. // Synth. Met. 2022. V. 291. P. 117195. https://doi.org/10.1016/j.synthmet.2022.117195
  33. 33. Tatarin S.V., Bezzubov S.I. // Inorg. Chem. 2024. V. 63. № 40. P. 18642. https://doi.org/10.1021/acs.inorgchem.4c02414
  34. 34. Takimoto K., Watanabe Y., Yoshida J. et al. // Dalton Trans. 2021. V. 50. № 38. P. 13256. https://doi.org/10.1039/D1DT01960K
  35. 35. Takimoto K., Shimada T., Nagura K. et al. // J. Am. Chem. Soc. 2023. V. 145. № 46. P. 25160. https://doi.org/10.1021/j.acs.3c05866
  36. 36. Wang W.-L., Yang D.-L., Gao L.-X. et al. // Molecules. 2014. V. 19. № 1. P. 102. https://doi.org/10.3390/molecules19010102
  37. 37. Smirnov D.E., Tatarin S.V., Kiseleva M.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 9. P. 1178. https://doi.org/10.1134/S0036023623601605
  38. 38. Sheldrick G.M. // SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
  39. 39. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  40. 40. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  41. 41. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 9. https://doi.org/10.1107/S2053229614024929
  42. 42. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  43. 43. Brunen S., Greil Y., Steinhardt P.S. et al. // Molecules. 2021. V. 26. № 7. P. 1822. https://doi.org/10.3390/molecules26071822
  44. 44. Radhi M.M. // Rend. Fis. Acc. Lincei. 2014. V. 25. P. 215. https://doi.org/10.1007/s12210-014-0295-z
  45. 45. Angarkhe P.R., Shaikh A., Rekha Rout S. et al. // J. Mol. Struct. 2024. V. 1296. № 1. 136920. https://doi.org/10.1016/j.molstruc.2023.136920
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library