ОХНМКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

КОМПЛЕКС 1,1,1-ТРИФТОРГЕКСАН-2,4-ДИОНАТ СКАНДИЯ(III): СИНТЕЗ, СТРУКТУРА, ТЕРМИЧЕСКИЕ СВОЙСТВА

Код статьи
S3034549925100055-1
DOI
10.7868/S3034549925100055
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 51 / Номер выпуска 10
Страницы
648-657
Аннотация
Синтезирован, очищен и охарактеризован методами элементного анализа, ПМР-спектроскопии и масс-спектрометрии новый комплекс 1,1,1-трифторгексан-2,4-дионата скандия(III) [Sc(5Htfac)]. При 150 K методом РСА определена его структура (CCDC № 2433044). Комплекс имеет молекулярное строение, взаимное расположение бидентатно-циклических лигандов соответствует ос-изомеру. В структуре обнаружены укороченные H…F-взаимодействия. Термические свойства исследованы методами ТГА и ДСК, определены температура (309.3 ± 0.5 K), энтальпия (ΔH°(T) = 36.0 ± 1.4 кДж моль) и энтропия (ΔS°(T) = 116.5 ± 4.5 Дж моль K) плавления. Температурная зависимость давления насыщенных паров определена с помощью метода потока (343–433 K) и статического метода с мембранным нуль-манометром (410–470 K). На их основе рассчитаны термодинамические характеристики испарения при средней и стандартной температурах (ΔH°(298.15 K) = 100.2 ± 1.3 кДж моль, ΔS°(298.15 K) = 201.8 ± 2.8 Дж моль K). Из полученных данных вычислены величины, ответственные за сублимацию комплекса (ΔH°(298.15 K) = 135.3 ± 1.9 кДж моль, ΔS°(298.15 K) = 315.3 ± 5.4 Дж моль K). Проведено сравнение строения и термических свойств [Sc(5Htfac)] с двумя β-дикетонатами скандия(III) с метильным и трет-бутильным заместителем в лиганде.
Ключевые слова
1,1,1-трифторгексан-2,4-дионат скандия(III) рентгеноструктурный анализ термические свойства энтальпия и энтропия парообразования и плавления
Дата публикации
15.04.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
42

Библиография

  1. 1. Makarenko A.M, Zaitsau D.H., Zherikova K.V. // Coatings. 2023. V. 13. № 3. P. 535. https://doi.org/10.3390/coatings13030535
  2. 2. Сартакова А.В., Макаренко А.М., Куратьева Н.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1217 . https://doi.org/10.1134/S003602362360140X
  3. 3. Макаренко А.М., Куратьева Н.В., Пищур Д.П. и др. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 221. https://doi.org/10.1134/S0036023622602215
  4. 4. Жерикова К.В., Куратьева Н.В. // Журн. структур. химии. 2019. Т. 60. № 10. С. 1688 https://doi.org/10.1134/S002247661910007X
  5. 5. Смоленцев А.Н., Жерикова К.В., Трусов М.С. и др. // Журн. структур. химии. 2011. Т. 52. № 6. С. 1108 https://doi.org/10.1134/S0022476611060059
  6. 6. Bennett D.W., Siddiquee T.A., Haworth D.T. et al. // J. Chem. Crystallogr. 2007. V. 37. P. 207. https://doi.org/10.1007/s10870-006-9171-8
  7. 7. Fadeeva V.P., Tikhonova V.D., Nikulicheva O.N. // J. Anal. Chem. 2008. V. 63. № 10. P. 1094.
  8. 8. Tikhonova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sustainable Development. 2020. V. 30. P. 640.
  9. 9. BrukerApex3SoftwareSuite:Apex3,SADABS-2016/2 and SAINT. Version 2019.1-0. Madison (WI, USA): Bruker AXS Inc., 2017.
  10. 10. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  11. 11. Суворов А.В. Термодинамическая химия парообразного состояния. Л.: Изд-во "Химия", 1970. С. 208.
  12. 12. Vikulova, E.S., Cherkasov, S.A., Nikolaeva, N.S. et al. // J. Therm. Anal. Calorim. 2019. V. 135. P. 2573. https://doi.org/10.1007/s10973-018-7371-z
  13. 13. Zherikova K.V., Makarenko, A.M., Morozova, N.B. // J. Therm. Anal. Calorim. 2022. V. 147. P. 14987. https://doi.org/10.1007/s10973-022-11683-z
  14. 14. Ermakova E., Sysoev S. V., Nikulina L.D. et al. // Thermochim. Acta. 2015. V. 622. P. 2. https://doi.org/10.1016/j.tca.2015.02.004
  15. 15. Morgan G.T., Moss H.W. Researches on residual affinity and co-ordination. Pt I. Metallic acetylacetones and their absorption spectra. 1914. V. 105. P. 189.
  16. 16. Zelenina L.N., Zherikova K.V., Chusova T.P. et al. // Thermochim. Acta. 2020. V. 689. P. 178639. https://doi.org/10.1016/j.tca.2020.178639
  17. 17. Bondi A. // J. Phys. Chem. 1964. V. 68. №3. Р. 441. https://doi.org/10.1021/j100785a001
  18. 18. Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // J. Chem. Thermodyn. 2016. V. 101. P. 162. https://doi.org/10.1016/j.jct.2016.05.020
  19. 19. Сартакова А.В., Макаренко А.М., Куратьева Н.В. и др. // Журн. структур. химии. 2024. Т. 65. №11. С. 135172. https://10.26902/jsc_id135172
  20. 20. Chickos J.S., Hesse D.G., Liebman J.F. // Struct. Chem. 1993. V. 4. №4. Р. 261. https://doi.org/10.1007/BF00673700
  21. 21. Zherikova K.V., Verevkin S.P. // Fluid Phase Equilibria. 2018. V. 472. P. 196. https://doi.org/10.1016/j.fluid.2018.05.004
  22. 22. Verevkin S.P., Emel'yanenko V.N., Zherikova K.V. et al. // Chem. Phys. Lett. 2020. V. 739. Р. 136911. https://doi.org/10.1016/j.cplett.2019.136911
  23. 23. Комиссарова Л.Н., Гуревич М.З., Сас Т.С. и др. // Журн. неорган. химии. 1978. Т. 23. С. 3145.
  24. 24. Matsubara N., Kuwamoto T. // Inorg. Chem. 1985. V. 24. Р. 2697. https://doi.org/10.1021/ic00211a022
  25. 25. Белова Н.В., Гирчев Г.В., Гирчева Н.И. и др. // Химия и хим. технол. 2012. Т. 55. №3. С. 50.
  26. 26. Игуменов И.К., Чумаченко Ю.В., Земское С.В. Тензиметрическое изучение летучих β-дикетонатов металлов. М.: Изд-во "Наука". 1982. С. 100.
  27. 27. Fahlman B.D., Barron A.R. // Adv. Mater. Opt. Electron. 2000. V. 10. Р. 223. https://doi.org/10.1002/1099-0712 (200005/10)10:3/53.0.CO;2-M
  28. 28. Макаренко А.М. Термодинамические процессы парообразования MOCVD предшественников на примере β-дикетонатных комплексов металлов(III). Дис. ... канд. хим. наук. Новосибирск, 2024. С. 137.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека