- PII
- S30345499S0132344X25090042-1
- DOI
- 10.7868/S3034549925090042
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 9
- Pages
- 576-589
- Abstract
- A series of new metallochelates of Co(II), Ni(II) and Cu(II) based on 1-phenyl-3-methyl-4-formyl-5-pyrazolone and derivatives of 1-aminobenzimidazoles has been obtained. The composition and spectral properties of which were studied using elemental analysis methods, 1H NMR (for HL) and IR spectroscopy. The parameters of the local atomic environment of metal ions in these complex compounds have been determined by X-ray absorption spectroscopy. The experimental structural data are confirmed by the calculation of optimized structures of complexes using the density functional theory method. The important role of additional donor centers (S, Se) and substituents at the imine nitrogen atom in the aminobenzimidazole fragment of ligands on the geometry of the coordination node of complexes is shown.
- Keywords
- XANES EXAFS ИК квантово-химические расчеты
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 37
References
- 1. Menezes R.A. and Bhat K.S. // Discov. Appl. Sci., 2025, vol. 7, p. 137. https://doi.org/10.1007/s42452-025-06528-x
- 2. Amezione El Hassani I., Rouzi K., Assila H., et al. // Reactions, 2023, vol. 4, p. 478. https://doi.org/10.3390/reactions4030029
- 3. Mustafa G., Zia-ur-Rehman M., Sumrra S.H., et al. // M., J. Mol. Struct., 2022, vol. 1262, p. 133044. https://doi.org/10.1016/j.molstruc.2022.133044
- 4. Ebenezer O., Shapi M., and Tuszynski J.A. // Biomedicines, 2022, vol. 10, p. 1124. https://doi.org/10.3390/biomedicines10051124
- 5. Parmar N.J. and Teraiya S.B. // J. Coord. Chem., 2009, vol. 62, p. 2388. https://doi.org/10.1080/00958970902833058
- 6. Burham N., Abdel-Azeem S.M. and El-Shahat, M.F. // Cent. Eur. J. Chem., 2009, vol. 7, p. 576. https://doi.org/10.2478/s11532-009-0089-9
- 7. Parmar N.J., Barad H.A., Pansuriya B.R., and Patel R.A. // J. Coord. Chem., 2011, vol. 64, p. 688. DOI: 10.1080/00958972.2011.553675
- 8. Marchetti F., Petrinari R. and Petrinari C. // Coord. Chem. Rev., 2015, vol. 303, p. 1. https://doi.org/10.1016/j.ccr.2015.05.003
- 9. Бурлов A.C., Коциенко Ю.В., Власенко В.Г. и др. // Коорд. химия, 2014, том 40, с. 460. https://doi.org/10.7868/S0132344X14080015
- 10. Burlov A.S., Uraev A.I., Garnovskii D.A., et al. // J. Mol. Struct., 2014, vol. 1064, p. 111. https://doi.org/10.1016/j.molstruc.2014.02.019
- 11. Uraev A.I., Nefedov S.E., Lyssenko K.A., et al. // Polyhedron, 2020, vol. 188, p. 114623. https://doi.org/10.1016/j.poly.2020.114623
- 12. Vlasenko V.G., Kubrin S.P., Garnovskii D.A., et al. // Chem. Phys. Lett., 2020, vol. 739, p. 136970. https://doi.org/10.1016/j.cplett.2019.136970
- 13. Parthar S., Pathan S., Jadeja R.N, et al. // Inorg. Chem., 2012, V. 51, p. 1152. https://doi.org/10.1021/ic202396q
- 14. Borodkina I.G., Burlov A.S., Borodkin G.S., et al. // Russ. J. Gen. Chem., 2016, vol. 86, p. 876. https://doi.org/10.1134/S1070363216040198
- 15. Харабаев Н.Н., Минкан В.И. // Коорд. химия, 2017, том 43, с. 131. https://doi.org/10.7868/S0132344X17030033
- 16. Кузьменко В.В., Кузьменко Т.А., Пожарский А.Ф., Крышпалюк О.В. // Химия гетероцикл. соед., 1990, № 12, с. 1689.
- 17. Порай-Кошиц Б.А. и Каипко Н.Я. // Журн. общ. химии, 1966, Т. 2, № 12, с. 4050.
- 18. Frisch M.J., Trucks G.W., Schlegel H.B., et al. // Gaussian 09, Wallingford (CT, USA): Gaussian, Inc., 2009.
- 19. Lee C., Yang W., and Parr R.G. // Phys. Rev. B, 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785
- 20. Becke A.D. // J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913
- 21. Krishnan R., Binkley J.S., Seeger R., and Pople J.A. // J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955
- 22. Zhurko G.A. and Zhurko D.A. // Chemcraft, Version 1.6. http://www.chemcraftprog.com
- 23. Ковычев Д.Н., Бабанов Ю.А., Замараев К.Н. и др. Рентгеноспектральный метод изучения структуры аморфных тел: EXAFS-спектроскопия, Новосибирск: Наука. Сиб.отд., 1988, 306 с.
- 24. Newville M. // J. Synchrotron Rad., 2001, vol. 8, p. 96. https://doi.org/10.1107/S0909049500016290
- 25. Zabinski S.I., Rehr J.J., Ankudinov A., and Alber R.C. // Phys. Rev., 1995, vol. 52, p. 2995. https://doi.org/10.1103/PhysRevB.52.2995
- 26. Dudek G.O. and Dudek E.P. // J. Am. Chem. Soc., 1964, vol. 86, p. 4283. https://doi.org/10.1021/ja01074a011
- 27. Dudek G.O. and Dudek E.P. // J. Chem. Soc. B, 1971, P. 1356. http://dx.doi.org/10.1039/J29710001356
- 28. Gilli G. and Gilli P. // J. Mol. Struct., 2000, vol. 552, p. 1. https://doi.org/10.1016/S0022-2860 (00)00454-3
- 29. Filarowski A., Koll A., and Sobczyk L. // Curr. Org. Chem., 2009, vol. 13, p. 172. https://doi.org/10.2174/138527209787193765
- 30. Flores-Leonar M., Esturau-Escofet N., Méndez-Sivalet J.M., et al. // C., J. Mol. Struct., 2011, vol. 1006, p. 600. https://doi.org/10.1016/j.molstruc.2011.10.011
- 31. Shimizu, K. Maeshima, H. Yoshida H., et al. // Phys. Chem. Chem. Phys., 2001, vol. 3, p. 862. https://doi.org/10.1039/b0072761
- 32. Sano M., Komorita S., and Yamatera H. // Inorg. Chem., 1992, vol. 31, p. 459. https://doi.org/10.1021/ic00029a022
- 33. Hinge V.K., Joshi S.K., Shrivastava B.D., et al. // Indian J. Pure Appl. Phys., 2011, vol. 49, p. 168.
- 34. Shulman R.G., Yafet T., Eisenberger P., and Blumberg W.E. // Proc. Natl. Acad. Sci. U.S.A., 1976, vol. 73, p. 1384. https://doi.org/0.1073/pnas.73.5.1384
- 35. Hahn J.E., Scott R.A., Hodgson K.O., et al. // Chem. Phys. Lett., 1982, vol. 88, p. 595. https://doi.org/10.1016/0009-2614 (82)85016-1
- 36. Srivastava U.C. and Nigam H.L. // Coord. Chem. Rev., 1973, vol. 9, p. 275. https://doi.org/10.1016/S0010-8545 (00)82080-9
- 37. Aganval B.K., Bhargava C.B., Vishnoi A.N., and Seth V.P. // J. Phys. Chem. Solids, 1976, vol. 37, p. 725.
- 38. Kostroum V.O., Fairchild C.A., Kukkonen C.A., and Wilkins J.W. // Phys. Rev. B, 1976, vol. 13, p. 3268. https://doi.org/10.1103/PhysRevB.13.3268
- 39. Rao B.J. and Chetal A.R. // J. Phys. C: Solid State Phys., 1982, vol. 15, p. 6281.
- 40. Smith T.A., Berding M., Penner-Hahn J.E., et al. // J. Am. Chem. Soc., 1985, vol. 107, p. 5945.
- 41. Blair R.A. and Goddard W.A. // Phys. Rev. B, 1980, vol. 22, p. 2767.
- 42. Berry A.J., Hack A.C., Mavrogenes J.A., et al. // Am. Mineral., 2006, vol. 91, p. 1773. https://doi.org/10.2138/am.2006.1940
- 43. Харабаев Н.Н. // Коорд. химия, 2017, T. 43, C. 709. https://doi.org/10.7868/S0132344X17120039
- 44. Vlasenko, V.G., Uraev, A.I., and Garnovskii, A.D. // Phys. Scr., 2005, vol. 115, p. 362. https://doi.org/10.1238/Physica.Topical.115a00362
- 45. Yalovega G.E., Vlasenko V.G., Uraev A.I., et al. // Rad. Phys. Chem, 2006, 75, p.1905. https://doi.org/10.1016/j.radphyschem.2005.07.051
- 46. Yang L., Powell D.R., and Houser R.P. // Dalton Trans., 2007, p. 955. https://doi.org/10.1039/b617136b
- 47. Addison A.W., Rao T.N., Reedijk J., et al. // Dalton Trans., 1984, no. 7, p. 1349. https://doi.org/10.1039/DT9840001349