RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Local Atomic Structure of Co(II), Ni(II), and Cu(II) Metallochelates Based on Derivatives of 1-Phenyl-3-Methyl-4-Formyl-5-Pyrazolone and 1-Aminobenzimidazoles

PII
S30345499S0132344X25090042-1
DOI
10.7868/S3034549925090042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 9
Pages
576-589
Abstract
A series of new metallochelates of Co(II), Ni(II) and Cu(II) based on 1-phenyl-3-methyl-4-formyl-5-pyrazolone and derivatives of 1-aminobenzimidazoles has been obtained. The composition and spectral properties of which were studied using elemental analysis methods, 1H NMR (for HL) and IR spectroscopy. The parameters of the local atomic environment of metal ions in these complex compounds have been determined by X-ray absorption spectroscopy. The experimental structural data are confirmed by the calculation of optimized structures of complexes using the density functional theory method. The important role of additional donor centers (S, Se) and substituents at the imine nitrogen atom in the aminobenzimidazole fragment of ligands on the geometry of the coordination node of complexes is shown.
Keywords
XANES EXAFS ИК квантово-химические расчеты
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
37

References

  1. 1. Menezes R.A. and Bhat K.S. // Discov. Appl. Sci., 2025, vol. 7, p. 137. https://doi.org/10.1007/s42452-025-06528-x
  2. 2. Amezione El Hassani I., Rouzi K., Assila H., et al. // Reactions, 2023, vol. 4, p. 478. https://doi.org/10.3390/reactions4030029
  3. 3. Mustafa G., Zia-ur-Rehman M., Sumrra S.H., et al. // M., J. Mol. Struct., 2022, vol. 1262, p. 133044. https://doi.org/10.1016/j.molstruc.2022.133044
  4. 4. Ebenezer O., Shapi M., and Tuszynski J.A. // Biomedicines, 2022, vol. 10, p. 1124. https://doi.org/10.3390/biomedicines10051124
  5. 5. Parmar N.J. and Teraiya S.B. // J. Coord. Chem., 2009, vol. 62, p. 2388. https://doi.org/10.1080/00958970902833058
  6. 6. Burham N., Abdel-Azeem S.M. and El-Shahat, M.F. // Cent. Eur. J. Chem., 2009, vol. 7, p. 576. https://doi.org/10.2478/s11532-009-0089-9
  7. 7. Parmar N.J., Barad H.A., Pansuriya B.R., and Patel R.A. // J. Coord. Chem., 2011, vol. 64, p. 688. DOI: 10.1080/00958972.2011.553675
  8. 8. Marchetti F., Petrinari R. and Petrinari C. // Coord. Chem. Rev., 2015, vol. 303, p. 1. https://doi.org/10.1016/j.ccr.2015.05.003
  9. 9. Бурлов A.C., Коциенко Ю.В., Власенко В.Г. и др. // Коорд. химия, 2014, том 40, с. 460. https://doi.org/10.7868/S0132344X14080015
  10. 10. Burlov A.S., Uraev A.I., Garnovskii D.A., et al. // J. Mol. Struct., 2014, vol. 1064, p. 111. https://doi.org/10.1016/j.molstruc.2014.02.019
  11. 11. Uraev A.I., Nefedov S.E., Lyssenko K.A., et al. // Polyhedron, 2020, vol. 188, p. 114623. https://doi.org/10.1016/j.poly.2020.114623
  12. 12. Vlasenko V.G., Kubrin S.P., Garnovskii D.A., et al. // Chem. Phys. Lett., 2020, vol. 739, p. 136970. https://doi.org/10.1016/j.cplett.2019.136970
  13. 13. Parthar S., Pathan S., Jadeja R.N, et al. // Inorg. Chem., 2012, V. 51, p. 1152. https://doi.org/10.1021/ic202396q
  14. 14. Borodkina I.G., Burlov A.S., Borodkin G.S., et al. // Russ. J. Gen. Chem., 2016, vol. 86, p. 876. https://doi.org/10.1134/S1070363216040198
  15. 15. Харабаев Н.Н., Минкан В.И. // Коорд. химия, 2017, том 43, с. 131. https://doi.org/10.7868/S0132344X17030033
  16. 16. Кузьменко В.В., Кузьменко Т.А., Пожарский А.Ф., Крышпалюк О.В. // Химия гетероцикл. соед., 1990, № 12, с. 1689.
  17. 17. Порай-Кошиц Б.А. и Каипко Н.Я. // Журн. общ. химии, 1966, Т. 2, № 12, с. 4050.
  18. 18. Frisch M.J., Trucks G.W., Schlegel H.B., et al. // Gaussian 09, Wallingford (CT, USA): Gaussian, Inc., 2009.
  19. 19. Lee C., Yang W., and Parr R.G. // Phys. Rev. B, 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785
  20. 20. Becke A.D. // J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913
  21. 21. Krishnan R., Binkley J.S., Seeger R., and Pople J.A. // J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955
  22. 22. Zhurko G.A. and Zhurko D.A. // Chemcraft, Version 1.6. http://www.chemcraftprog.com
  23. 23. Ковычев Д.Н., Бабанов Ю.А., Замараев К.Н. и др. Рентгеноспектральный метод изучения структуры аморфных тел: EXAFS-спектроскопия, Новосибирск: Наука. Сиб.отд., 1988, 306 с.
  24. 24. Newville M. // J. Synchrotron Rad., 2001, vol. 8, p. 96. https://doi.org/10.1107/S0909049500016290
  25. 25. Zabinski S.I., Rehr J.J., Ankudinov A., and Alber R.C. // Phys. Rev., 1995, vol. 52, p. 2995. https://doi.org/10.1103/PhysRevB.52.2995
  26. 26. Dudek G.O. and Dudek E.P. // J. Am. Chem. Soc., 1964, vol. 86, p. 4283. https://doi.org/10.1021/ja01074a011
  27. 27. Dudek G.O. and Dudek E.P. // J. Chem. Soc. B, 1971, P. 1356. http://dx.doi.org/10.1039/J29710001356
  28. 28. Gilli G. and Gilli P. // J. Mol. Struct., 2000, vol. 552, p. 1. https://doi.org/10.1016/S0022-2860 (00)00454-3
  29. 29. Filarowski A., Koll A., and Sobczyk L. // Curr. Org. Chem., 2009, vol. 13, p. 172. https://doi.org/10.2174/138527209787193765
  30. 30. Flores-Leonar M., Esturau-Escofet N., Méndez-Sivalet J.M., et al. // C., J. Mol. Struct., 2011, vol. 1006, p. 600. https://doi.org/10.1016/j.molstruc.2011.10.011
  31. 31. Shimizu, K. Maeshima, H. Yoshida H., et al. // Phys. Chem. Chem. Phys., 2001, vol. 3, p. 862. https://doi.org/10.1039/b0072761
  32. 32. Sano M., Komorita S., and Yamatera H. // Inorg. Chem., 1992, vol. 31, p. 459. https://doi.org/10.1021/ic00029a022
  33. 33. Hinge V.K., Joshi S.K., Shrivastava B.D., et al. // Indian J. Pure Appl. Phys., 2011, vol. 49, p. 168.
  34. 34. Shulman R.G., Yafet T., Eisenberger P., and Blumberg W.E. // Proc. Natl. Acad. Sci. U.S.A., 1976, vol. 73, p. 1384. https://doi.org/0.1073/pnas.73.5.1384
  35. 35. Hahn J.E., Scott R.A., Hodgson K.O., et al. // Chem. Phys. Lett., 1982, vol. 88, p. 595. https://doi.org/10.1016/0009-2614 (82)85016-1
  36. 36. Srivastava U.C. and Nigam H.L. // Coord. Chem. Rev., 1973, vol. 9, p. 275. https://doi.org/10.1016/S0010-8545 (00)82080-9
  37. 37. Aganval B.K., Bhargava C.B., Vishnoi A.N., and Seth V.P. // J. Phys. Chem. Solids, 1976, vol. 37, p. 725.
  38. 38. Kostroum V.O., Fairchild C.A., Kukkonen C.A., and Wilkins J.W. // Phys. Rev. B, 1976, vol. 13, p. 3268. https://doi.org/10.1103/PhysRevB.13.3268
  39. 39. Rao B.J. and Chetal A.R. // J. Phys. C: Solid State Phys., 1982, vol. 15, p. 6281.
  40. 40. Smith T.A., Berding M., Penner-Hahn J.E., et al. // J. Am. Chem. Soc., 1985, vol. 107, p. 5945.
  41. 41. Blair R.A. and Goddard W.A. // Phys. Rev. B, 1980, vol. 22, p. 2767.
  42. 42. Berry A.J., Hack A.C., Mavrogenes J.A., et al. // Am. Mineral., 2006, vol. 91, p. 1773. https://doi.org/10.2138/am.2006.1940
  43. 43. Харабаев Н.Н. // Коорд. химия, 2017, T. 43, C. 709. https://doi.org/10.7868/S0132344X17120039
  44. 44. Vlasenko, V.G., Uraev, A.I., and Garnovskii, A.D. // Phys. Scr., 2005, vol. 115, p. 362. https://doi.org/10.1238/Physica.Topical.115a00362
  45. 45. Yalovega G.E., Vlasenko V.G., Uraev A.I., et al. // Rad. Phys. Chem, 2006, 75, p.1905. https://doi.org/10.1016/j.radphyschem.2005.07.051
  46. 46. Yang L., Powell D.R., and Houser R.P. // Dalton Trans., 2007, p. 955. https://doi.org/10.1039/b617136b
  47. 47. Addison A.W., Rao T.N., Reedijk J., et al. // Dalton Trans., 1984, no. 7, p. 1349. https://doi.org/10.1039/DT9840001349
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library