RAS Chemistry & Material ScienceКоординационная химия Russian Journal of Coordination Chemistry

  • ISSN (Print) 0132-344X
  • ISSN (Online) 3034-5499

Neutral Terbium(III) Tris(complex) with 4,4,5,5,6,6,6-Heptafluoro-1-(1-methyl-1H-pyrazol-4-yl)hexane-1,3-dione: Synthesis, Structure, and Spectral Luminescence Properties

PII
10.31857/S0132344X24090064-1
DOI
10.31857/S0132344X24090064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 9
Pages
592-603
Abstract
The reaction of 1,3-diketone containing 1-methyl-1H-pyrazol-4-yl and perfluoropropyl fragments with TbCl3·6H2O in the presence of NaOH in ethanol is studied. The molecular and crystal structures of the complex are studied by single-crystal X-ray diffraction (XRD). Compound [Tb(L)3(EtOH)2] crystallizes in the triclinic crystal system with the space group. The geometry of the coordination polyhedron {LnO8} corresponds to a square antiprism. Intermolecular interactions N…H–O, C–H…O, and C–H…F leading to the formation of supramolecular chains are observed in crystals of the complex. The UV-irradiated complex exhibits green luminescence caused by transitions 5D4 → 7Fj (j = 2–6) characteristic of the Tb3+ ion. The main photophysical luminescence parameters are determined, and the scheme of energy transfer in the complex is proposed. The synthesized compound can be of interest as an independent luminophore or as the initial substance for the synthesis of heteroligand complexes by the substitution of ethanol molecules in the internal coordination sphere.
Keywords
1,3-дикетоны люминесценция перенос энергии тербий координационные соединения
Date of publication
08.09.2024
Year of publication
2024
Number of purchasers
0
Views
13

References

  1. 1. Costa I.F., Blois L., Paolini T.B. et al. // Coord. Chem. Rev. 2024. V. 502. P. 215590. https://doi.org/10.1016/j.ccr.2023.215590
  2. 2. Saloutin V.I., Edilova Y. O., Kudyakova Y. S. et al. // Molecules. 2022. V. 27. № 22. P. 7894. https://doi.org/10.3390/molecules27227894
  3. 3. De Sa G.F., Malta O. L., de Mello Donegá C. et al. // Coord. Chem. Rev. 2000. V. 196. № 1. P. 165. https://doi.org/10.1016/S0010-8545 (99)00054-5
  4. 4. Chauhan A., Kumar A., Singh G. et al. // J. Rare Earths. 2024. V. 42. № 1. P. 16. https://doi.org/10.1016/j.jre.2023.02.006
  5. 5. Wu A., Huo P., Yu G. et al. // Adv. Opt. Mater. 2022. V. 10. № 22. P. 2200952. https://doi.org/10.1002/adom.202200952
  6. 6. Ilmi, R., Kansız, S., Dege, N., Khan, M.S. // J. Photochem. Photobiol. A. 2019. V. 377. P. 268. https://doi.org/10.1016/j.jphotochem.2019.03.036
  7. 7. Bryleva Y.A., Arteme′v A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. № 31. P. 13869. https://doi.org/10.1039/D1NJ02441H
  8. 8. Gontcharenko V.E., Lunev A.M., Taydakov I.V. et al. // IEEE Sens. J. 2019. V. 19. № 17. P. 7365–7372. https://doi.org/10.1109/JSEN.2019.2916498
  9. 9. Zairov R.R., Shamsutdinova N. А., Fattakhova А. N. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1325–1331. https://doi.org/10.1007/s11172-016-1456-2
  10. 10. Jia Y., Wang J., Zhao L., Yan B. // Talanta. 2022. V. 236. P. 122877. https://doi.org/10.1016/j.talanta.2021.122877
  11. 11. Lyubov D.M., Neto A.N.C., Fayoumi A. et al. // J. Mater. Chem. C. 2022. V. 10. № 18. P. 7176. https://doi.org/10.1039/d2tc01289h
  12. 12. Pavlov D.I, Yu X., Ryadun A.A. et al. // Food Chem. 2024. P. 138747. https://doi.org/10.1016/j.foodchem.2024.138747
  13. 13. Wang L., Shi C., Zhang C. et al. // Adv. Mater Technol. 2021. V. 6. № 8. P. 2100078. https://doi.org/10.1002/admt.202100078
  14. 14. Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. P. 2311939. https://doi.org/10.1002/adma.202311939
  15. 15. de Azevedo L.A., Gamonal A., Maier-Queiroz R. et al. // J. Mater. Chem. C. 2021. V. 9. № 29. P. 9261–9270. https://doi.org/10.1039/d1tc01357b
  16. 16. Korshunov V.M., Metlina D. A., Kompanets V. O. et al. //Dyes and Pigments. 2023. V. 218. P. 111474. https://doi.org/10.1016/j.dyepig.2023.111474
  17. 17. de Oliveira T.C., de Lima J.F., Colaço M.V. et al. // J. Lumin. 2018. V. 194. P. 747. https://doi.org/10.1016/j.jlumin.2017.09.046
  18. 18. Ilmi R., Iftikhar K. // J. Photochem. Photobiol. A. 2017. V. 333. P. 142. https://doi.org/10.1016/j.jphotochem.2016.10.014
  19. 19. Varaksina E.A., Taydakov I.V., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 196. P. 161. https://doi.org/10.1016/j.jlumin.2017.12.006
  20. 20. Varaksina E.A., Kiskin M.A., Lyssenko K A. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. №. 45. P. 25748. https://doi.org/10.1039/d1cp02951g
  21. 21. Taydakov I.V., Krasnoselsky S.S. // Chem. Heterocycl. Compd. 2011. V. 47. P. 695. https://doi.org/10.1007/s10593-011-0821-1
  22. 22. Sheldrick G.M. SADABS. Program for Scaling and Correction of Area Detector Data. Germany: Univ. of Göttingen., 1997.
  23. 23. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. http://doi.org/10.1107/S2053273314026370
  24. 24. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. http://doi.org/10.1107/S2053229614024218
  25. 25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  26. 26. Metlin M.T., Belousov Y.A., Datskevich N.P. et al. // Russ. Chem. Bull. 2022. V. 71. № 10. P. 2187. https://doi.org/10.1007/s11172-022-3645-5
  27. 27. Taidakov I.V., Lobanov A.N., Vitukhnovskii A.G. et al. // Russ. J. Coord. Chem. 2013. V. 39. P. 437. https://doi.org/10.1134/S1070328413050072
  28. 28. Taidakov I.V., Vitukhnovskii A.G., Nefedov S.E. // Russ. J. Inorg. Chem. 2013. V. 58. № 7. P. 783. https://doi.org/10.1134/S0036023613070218
  29. 29. Metlina D.A., Metlin M.T., Ambrozevich S.A. et al. // Dyes Pigments. 2020. V. 181. P. 108558. https://doi.org/10.1016/j.dyepig.2020.108558
  30. 30. Metlin M.T., Goryachii D.O., Aminev D.F. et al. // Dyes Pigments. 2021. V. 195. P. 109701. https://doi.org/10.1016/j.dyepig.2021.109701
  31. 31. Petrov A.I., Lutoshkin M.A., Taydakov I.V. // Eur. J. Inorg. Chem. 2015. V. 2015. № 6. P. 1074. https://doi.org/10.1002/ejic.201403052
  32. 32. Carnall W.T., Crosswhite H., Crosswhite H.M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF₃. Argonne, IL (United States): Argonne National Lab., 1978.
  33. 33. Bünzli J.C.G., Eliseeva S.V. // Lanthanide luminescence: photophysical, analytical and biological aspects. Springer Series on Fluorescence. V. 7. Berlin; Heidelberg: Springer, 2011. P. 1. https://doi.org/10.1007/4243_2010_3
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library