- PII
- S3034549925100017-1
- DOI
- 10.7868/S3034549925100017
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 10
- Pages
- 603-610
- Abstract
- To complete the studies of double complex compounds, (N-thiocyanato)chromates(III) of lanthanide complexes with pyridine-3-carboxylic acid, new compounds of the compositions [LnL(HO)][Cr(NCS)]·nHO (Ln = Pr (I), n = 1.5; Sm (II), Gd (III), Tb (IV), n = 2; L = CHNO). The substances were studied by chemical analysis, IR spectroscopy, and PXRD (CCDC No. 2427051–2427054). In the crystal structures of complexes I–IV, the cation has a chain structure due to the bidentate-bridging function of pyridine-3-carboxylic (nicotinic) acid molecules. The coordination environment of the lanthanide atoms consists of eight oxygen atoms belonging to six nicotinic acid molecules and two coordinated HO molecules, located at the vertices of a distorted square antiprism. In the isolated [Cr(NCS)] anions, the Cr coordination polyhedron consists of the N atoms of six thiocyanate ions and is close to a regular octahedron. In the structures of complexes I–IV, the space between polymeric cations is filled with complex anions and crystallization water molecules. Additionally, the structure is stabilized by intermolecular hydrogen bonds.
- Keywords
- двойные комплексные соединения лантаноиды(III) хром(III) пиридин-3-карбоновая кислота
- Date of publication
- 22.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 54
References
- 1. Хентов В.Я., Семченко В.В., Шачнева Е.Ю. Процессы комплексообразования природного и техногенного происхождения. М.: РУСАЙНС, 2020. 266 с.
- 2. Qiang Zhao, Su-Juan Jin, Zhi Shen et al. // Inorg. Chim. Acta. 2024. V. 567. P. 122061. https://doi.org/10.1016/j.ica.2024.122061
- 3. Xiuling Xu, Zhong Wang, Chong-Chong Yan et al. // J. Solid State Chem. 2020. V. 292. P. 121708. https://doi.org/10.1016/j.jssc.2020.121708
- 4. Jin Zhang, Jing Huang, Jun Yang, Hong-Ji Chen // Inorg. Chem. Commun. 2012. V. 17. P. 163. https://doi.org/10.1016/j.inoche.2011.12.042
- 5. Xiao-niu Fang, Wen-tong Chen, Dong-sheng Liu // Chem. Res. Chin. Univ. 2008. V. 24. № 5. P. 529. https://doi.org/10.1016/S1005-9040 (08)60111-7
- 6. Gonzalez-Vergara E., Hegenauer J., Salman P. et al. // Inorg. Chim. Acta. 1982. V. 66. P. 115. https://doi.org/10.1016/S0020-1693 (00)85799-0
- 7. Jia G., Law G.L., Tanner P.A., Wong W.T. // Inorg. Chem. 2008.V. 47. № 20. P. 9431. https://doi.org/10.1021/ic8010103
- 8. Alzamly A., Bakiro M., Ahmed S.H. et al. // Coord. Chem. Rev. 2020. V. 425. P. 213543. https://doi.org/10.1063/ccr.2020.213543
- 9. Rong-Hua Hu, Shu Zhen Liu, Yu-Yu Xu et al. // J. Mol. Struct. 2022. V. 1265. P. 133396. https://doi.org/10.1166/molstruct.2022.133396
- 10. Jiang-Gao Mao, Hong-Jie Zhang, Jia-Zuan Ni et al. // Polyhedron. 1998. V. 17. № 23–24. P. 3999. https://doi.org/10.1016/S0277-5387 (98)00198-3
- 11. Xinrui Wang, Yupeng Jiang, Antoine Tissot, Christian Serre // Coord. Chem. Rev. 2023. V. 497. P. 215454. https://doi.org/10.1016/j.ccr.2023.215454
- 12. Jiménez J.-R., Doistau B., Poncet M., Piguel C. // Coord. Chem. Rev. 2021. V. 434. P. 215454. https://doi.org/10.1016/j.ccr.2023.213750
- 13. Kumar S., Maji S., Sundararajan K. // J. Mol. Liquids. 2023. V. 386. P. 122545. https://doi.org/10.1016/j.molliq.2023.2122545
- 14. Lis S., Hnatelko Z., Barczynski P., Elbanowski M. // J. Alloys Comp. 2002. V. 344. № 1–2. P. 70. https://doi.org/10.1016/S0925-8388 (02)00310-9
- 15. Swiderski G., Kalinowska M., Wilczewska A.Z. et al. // Polyhedron. 2018. V. 150. № 1. P. 97. https://doi.org/10.1016/j.poly.2018.04.045
- 16. Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Chem. Thermodynamics. 2021. V. 161. P. 106552. https://doi.org/10.1016/j.jct.2021.106552
- 17. Silveira M., Mayer D.A., Rebelatto E.A. et al. // J. Chem. Thermodynamics. 2023. V. 184. P. 107084. https://doi.org/10.1016/j.jct.2021.107084
- 18. Zhi Shen, Qiang Zhao, Hai-Quan Xieet et al. // J. Solid State Chem. 2021. V. 302. P. 122437. https://doi.org/10.1016/j.jssc.2021. P.122437
- 19. Romanenko N.R., Faraonov M.A., Mikhailenk M.V. et al. // Dyes Pigments. 2023. V. 218. P. 111471. https://doi.org/10.1016/j.dyeplg.2023.111471
- 20. Bao-min Luo, Zhi Shen, Qiang Zhao et al. // Inorg. Chim. Acta. 2021. V. 527. P. 120561. https://doi.org/10.1016/j.ica.2021.120561
- 21. Hanuza J., Hermanowicz K., Lisiecki R. et al. // Opt. Mater. 2020. V. 109. P. 110208. https://doi.org/10.1016/j.optmat.2020.110208
- 22. Abdolmaleki S., Aliabadi A., Ghadermazi M. // Inorg. Chim. Acta. 2022. V. 542. P. 121152. https://doi.org/10.1016/j.ica.2022.121152
- 23. Xiaopeng Zhu, Zhipeng Li, Xiaoxi Ji et al. // J. Inorg. Biochem. 2021. V. 222. P. 111505. https://doi.org/10.1016/j.jinorgbio.2021.111505
- 24. Cooper J.A., Anderson B.F., Buckley P.D., Blackwell L.F. // Inorg. Chem. Acta. 1984. V. 91. № 1. P. 1. https://doi.org/10.1016/S0020-1693 (00)84211-5
- 25. Kegley E.B., Spears J.W., Brown Jr T.T. // J. Dairy Sci. 1996. V. 79. № 7. P. 1278. https://doi.org/10.3168/jds.S0022-0302 (96)76482-2
- 26. Aboshyan-Sorgho L., Cantuel M., Petoud S. et al. // Coord. Chem. Rev. 2012. V. 256. № 15–16. P. 1644. https://doi.org/10.1016/j.ccr.2011.12.013
- 27. Черкасова Е.В., Пересыпкина Е.В., Вировец А.В., Черкасова Т.Г. // Журн. неорган. химии. 2013. Т. 58. № 9. С.1165 https://doi.org/10.1134/S0036023613090076
- 28. Черкасова Е.В., Первухина Н.В., Куратьева Н.В., Черкасова Т.Г. // Журн. неорган. химии. 2019. Т. 64. № 3. С. 266 https://doi.org/10.1134/S0036023613030070
- 29. Черкасова Е.В., Первухина Н.В., Куратьева Н.В. и др. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 896 https://doi.org/10.1134/S003602361305011X
- 30. Kay J.L., Moore J.W., Glick M.D. // Inorg. Chem. 1972. V.11. № 11. P. 2818. https://doi.org/10.1021/jc50117a047
- 31. Sheldrick G.M. SADABS. Version 2.01. Madison (WI, USA): Bruker AXS Inc., 2004. https://doi.org/10.4236/jssm.2017.103018
- 32. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1039/p298700000s1
- 33. Ferraris G., Franchini–Angela M. // Acta Crystallogr. B. 1972. V. 28. P. 3572. https://doi.org/10.1107/S0567740873003456
- 34. Накамото К. ИК-спектры и спектры KP неорганических и координационных соединений. М.: Мир, 1991. 536 с
- 35. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных / Под ред. Тарасевича Б.Н. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 439 с.
- 36. Смит A. Прикладная ИК-спектроскопия / Под ред. Тарасевича Б.Н. М.: Мир, 1982. 328 с.